Sabtu, 23 Maret 2013

Teori Tentang Eliminasi Gauss

Dalam aljabar linear, eliminasi Gauss-Jordan adalah algoritma versi dari eliminasi Gauss. Pada metode eliminasi Gauss-Jordan kita membuat nol elemen-elemen di bawah maupun di atas diagonal utama suatu matriks. Hasilnya adalah matriks tereduksi yang berupa matriks diagonal satuan (Semua elemen pada diagonal utama bernilai 1, elemen-elemen lainnya nol).
Metode eliminasi Gauss-Jordan kurang efisien untuk menyelesaikan sebuah SPL, tetapi lebih efisien daripada eliminasi Gauss jika kita ingin menyelesaikan SPL dengan matriks koefisien sama.
Motede tersebut dinamai Eliminasi Gauss-Jordan untuk menghormati Carl Friedrich Gauss dan Wilhelm Jordan.

Aplikasi untuk mencari Invers

Jika eliminasi Gauss-Jordan diterapkan dalam matriks persegi, metode tersebut dapat digunakan untuk menghitung invers dari matriks. Eliminasi Gauss-Jordan hanya dapat dilakukan dengan menambahkan dengan matriks identitas dengan dimensi yang sama, dan melalui operasi-operasi matriks:
[ A I ] \Longrightarrow
A^{-1} [ A I ] \Longrightarrow
[ I A^{-1} ]
Jika A contoh matriks persegi yang diberikan:
 A =
\begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}
Kemudian, setelah ditambahkan dengan matriks identitas:
 [ A I ] = 
\begin{bmatrix}
2 & -1 & 0 & 1 & 0 & 0\\
-1 & 2 & -1 & 0 & 1 & 0\\
0 & -1 & 2 & 0 & 0 & 1
\end{bmatrix}
Eliminasi Gauss-Jordan pada [ A I ] menghasilkan bentuk yang tereduksi:
 [ I A^{-1} ] = 
\begin{bmatrix}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4}\\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2}\\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{bmatrix}.
Dengan melakukan operasi baris dasar pada matriks [ A I ] sampai A menjadi matriks identitas, maka didapatkan hasil akhir:
 I =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}\qquad
 A^{-1} =
\begin{bmatrix}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4}\\
\frac{1}{2} & 1 & \frac{1}{2}\\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{bmatrix}

1 komentar: